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Abstract—A general one-dimensional geometrical non-lincar model of a composite delaminated
beam under arbitrary axial and transverse loading for any boundary conditions is derived for
predicting the post-buckling behavior. The model comprises nonlinear equations based on the Von
Karman kinematic approach, suitable for checking the effect of delumination and initial imperfection
on the overall non-linear behavior. The differential equations. which incorporate the bending-
stretching coupling effect. are solved by Newton's method using a finite-difference scheme. The
delamination ratio purumeter, bending-stretching coupling and the initial imperfection are examined
by means of parameteric analysis.

1. INTRODUCTION

Application of advanced composite materials entails advanced analytical tools and insight
into the response and failure characteristics of laminated composite structures. One mode
of failure is the so-called delamination effect, which consists of interply fracture occurring
during fabrication or under the action of service factors such as impact loading. [t may
significantly impair the load-carrying capacity of the laminate. mainly through local insta-
bility created in the vicinity of the alfected spot. Such local instability (represented
analytically by the first bifurcation point, given by a system of cigenvalucs) does not
necessarily imply the ultimate load, and usually the laminate is capable of carrying on in ot
post-buckling mode under higher loading,.

The bifurcation point is discussed in recent works (Chai er al., 1981 ; Yin et al., 1984 ;
Simitses er af., 1985 Shirakumar and Whitcomb, 1985; Sheinman ef al., 1989) on the
delamination problems of one-dimensional models, Yin (1986) and Chai er of. {1981) also
deat with the post-buckling shape, but in terms of local delumination growth ruther than
of geometrical non-linear analysis. In most of the above studies, no allowance is made
for the extremely important bending stretching coupling cffect, which makes for drastic
reduction of the overall non-lincar behavior, It should be noted that even if the plies are
initially arranged in a symmetric pattern (in which case there is no coupling), this symmetry
is disturbed on delamination and coupling becomes possible,

The present study is an attempt to provide a suitable analysis for the non-lincar
behavior of a composite deluminated beam with initial imperfection under external loading,
at an arbitrary stacking combination and orientation and under arbitrary boundary con-
ditions, It is an extension of Sheinman and Adan’s therory (1987) on delaminated beams,
and of Sheinman er al’s work (1989) on post-buckling behavior. The geometrical model is
the one employed by Simitses er af. (1985) (also sec Sheinman ¢r ol., 1989), whereby a
laminated composite beam of thickness ¢ containing (at depth & below the top surface : see
Fig. 1) a parallel plane crack extends over the lengthwise interval £, = {y and across the
whole width. The crack, referred to as a “delamination™, is assumed to exist before loading
is applicd and not to grow under it. The beam is subjected to arbitrary axial and transverse
loading. The thickness-to-span (and to delamination length) is also assumed to be very
small. so that the shear deformation can be neglected (see Sheinman and Adan. 1987). The
delamination subdivides the beam into four regions, represented by equilibrium cquations,
continuity requirements at the crack tips, and boundary conditions at the ends. The non-
linear differential equations are derived for the initial imperfection parameter of each region.
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Fig. |. Load-deflection curves for an isotropic simply-supported beam with positive initial imper-
fection for delumination length parameter x = I/l = 0.375.

The solution procedure is based on reduction of the non-linear differential equations
to a lincar sequence by a modification of Newton's method. and conversion to an algebraic
one by finite differences. A parametric study of the effect of delamination and initial
imperfection on the non-lincar behavior was carried out by applying the procedure to
isotropic and anisotropic beams.

2. GOVERNING EQUATIONS
Kinematics
The Kirchholl -Love hypothesis, whereby a normal to an undeformed surface remains
unstretched after deformations, is adopted as the basic assumption. This leaves only two
independent variables, namely the displacements in the axial (1) and normal (w) directions,
represented by the x- and z-coordinates, respectively (see Fig. 1),
The kinematic relation for cach region is:

Ulx,2) = u(x) —zw ((x)

Wi(x,z) = w(x)

g(x,z) = ¢ (x)+2y(x) (1)
where ¢ '(v) and x(x) are respectively, the strain of the reference surfuce and change of
curvature under deformation, which, associated with the displacement field and imper-
fection function w(x), can be written as:

£(x) = u+ v (v +20)
x(x) = —w,,. ()
Constitutire equations
Under the classical laminate theory (i.e. for a single anisotropic equivalent layer) the
force-strain relations can be written as:
N=dA,&'=B,w,,
M= Blln‘—DlI“...\:\' (3)

where N and M are the axial force and bending moment, which are given by
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(NM)= J S (1,2 d4. )
4

S.. is the Kirchhoff stress in the undeformed system, A4, B, and D being the usual stiffness
parameters employed in laminate theory:

Ay
(An'gu«Dn)zbJ; Qn(l..‘.‘.:z)d:. 5

b is the beam width and Q,, the elastic stiffness transformed to the x direction.
The bending moment can alternatively be expressed as (see Whitney, 1987)

M= bHN—'dH“‘Jx' (6)

The classical one-dimensional analysis involves the development of the laminated beam
theory (Whitney, 1987):

by = By /Ay

du‘*‘-’Dn“Bft/f*n- )]

while for behavior which is referred to as cylindrical bending (see Sheinman, 1989)

bo = (4 "1BDn,
dyy = ([P}~ [Bl[4'11BD- 8
Equilibrium equations

By applying the variational principle, the following non-lincar equations are obtained
for i straight beam:

NJ = =P
M+ N W D +pw+W,) = —p. )]

with the boundary conditions imposed on

u or N
w oor M +N(v,.+w,)
w, or M. (10)
p. and p, are the external distributing loads in the axial and transverse directions,
respectively.
Substituting eqns (3)-(6) in (9) and (10), we obtain the non-linear equilibrium equation
in terms of displacements
A it {“,r.t + éw..c.\'(w..r + 2“’,.& + gM’J(“"_“ + 2«...\':)] - B 11 w..ul = "l’ ¥
—‘I! i “‘mru + [/‘! !(".x + 12“'_:(""_1' + 2'?_\')) - BI |“'..(.t] " (“‘.r.\— + “.“.n) +p.((”‘_t + ﬁ.’.t) +bl lp.r..v = —p."
(an
the boundary conditions being:
u or A H ![“J + §Wﬁr(“’x + ‘;'.x)} - 81 1 W ey
W or - dl 1 W e + hl !px + {'4 I {(“J + %“'J (“'..( + “.'.x))
- Bl { “’..\'XI(“‘.\' + “;‘,.l’)
‘'« Of B| 1 [",.\' + éw,v(“..\- + ‘;‘J)] - DI 1W e (12)
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Continuity requirements
The following continuity requirements are applied at the crack tip (see Simitses ez al..
1985 ; Sheinman et al.. 1989).

Kinematic continuity conditions

=
Y
I
<
=
=

v (13

Continuity of moments and forces

w}i‘/{-—u)ﬂf‘—“)M'F”’N(i—;ﬁ)—u}}\/(“:ﬁ) =0

5

- -~

_(u)Q+(2)Q+(ﬂ)Q=O (14)
-—“'”N-*-‘:)N-FLUN =0

where the left-hand superscript () denotes the numerical designation of the region of the
scgment adjoining the crack tip: for the first crack tip g = 1 and for the sccond ¢ = 4. The
shear foree @ is defined as

Q=M +Niw +it,). (15)

The solution procedure is mainly the same as in Sheinman and Adan (1987), where a
modification of Newton's method is employed for reducing the non-lincar equations to a
linear sequence, and a central finite difference scheme with fictitious points is used to convert
the differential equations into algebraic ones. Finally, this algebraic set of cquations is
solved by a modification of Potter’s method (Sheinman and Simitses, 1984).

3. NUMERICAL RESULTS AND DISCUSSION

For the procedure outlined above, a general computer program NADB (Non-linear
Analysis of Delaminated Beams) was wrilten, covering non-lincar behavior of any de-
laminated composite beam with arbitrary stacking combination and orientation under
arbitrury external loading and boundary conditions, as well as any geometrical imperfection.

Two cases of a simply-supported beam under axial compression were considered : (a)
isotropic and (b) anisotropic.

{a) Isatropic beam

This example is reproduced from Sheinman and Adan (1987) and demonstrates the
effect of the initial imperfection as well as of the delamination ratio parameter (x = [,/1).
The data for this example are: length / = 4.0 m, width = 0.04 m, thickness of laminate
1 = 0.08 m, thickness of delaminated upper layer & = 0.01 m (H = 0.07), modulus of
elasticity £ = 2.1 x 10" N m~* and Poisson’s ratio v = 0.3. The initial imperfection was
taken as w(x) = & sin (nx//). The non-lincar behavior was first examined for a positive
initial imperfection with small amplitude. In Fig. | the load-deflection curves of all regions
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Fig. 2. Effect of delumination ratio (z = /,/) on non-linear behavior of an isotropic simply-
supported beam with positive initial imperfection.

(region | at x =/, regions 2 and 3 at x = {, +/,/2) are plotted for a = /,/{ = 0.375. One
can see that at the load level of ¥ = 0.4N,, (where N, is defined as the buckling load of the
undelaminated beam), the delaminated upper layer (region 3) is buckled. Then the total
stiffness of all regions is reduced. but the load capacity remains higher up to about 0.7N,,.
In other words, the bifurcation point for delaminated beams is only an indication of the
overall behavior, and does not represent the load capacity, and the post-buckling behavior
should be considered. The effect of « is shown in Fig. 2, in which it is plotted versus
deflection of the delaminated upper layer. It is seen that as x increases, the load capacity
decreases. Above the local buckling load of the upper layer, the static scheme changes and
the internal force in this region is reduced, as illustrated in Fig. 3. The explanation is that
as the upper layer buckles, the eccentricity increases and so does the tensile foree due to the
moment, so that the compressive force decreases.

The local buckling load. represented by the first bifurcation point (in region 3), is given
by N, = Br(El)/I5. where (£1), and [, are the stilfness and length of region 3 which
buckles first. ff is a parameter which depends on the end constraints of region 3. which are
in turn a function of the imperfection amplitude. For a perfect beam the upper layer can
be considered as a clamped-clumped beam with ff = 4. In Fig. 4, § is plotted versus the
impertection amplitude for some values of a.

It should be noted here that the present methodology does not allow for the contact
phenomenon. So, for some shape of the imperfection, local buckling cannot occur (when
the delaminated upper layer buckles toward the lower layer). For this reason we also
consider the behavior under a negative initial imperfection, where buckling of the upper
layer is possible.
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Fig. 3. Load-dcflection curves of region 3 for different values of delamination ratio (x).
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Fig. 4. Reduction of buckling load with increasing initial imperfection for different values of
delamination ratio (1),
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Fig. 5. Load deflection curves for an isotropic simply-supported beam with negative initial imper-
fection 8 = —-(0.00011.
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Fig. 6. Load -deflection curves for an isotropiv simply-supported beam with negative initial imper-
fection & = ~0.06251.

The load-deflection curves for all regions arc plotted in Fig. 5 for a small initial
imperfection amplitude (6 = —0.0001¢) and in Fig. 6 for a large amplitude (6 = ~0.06251).
It is seen (Fig. 5) that although the initial imperfection was upward. the buckling shape of
the upper layer is upward but the beam deflects downward. For the larger amplitude (Fig.
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Fig. 7. Load-deflection curves of an anisotropic simply-supported beam with B, < 0.
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Fig. 8. Load deflection curves of an anisotropic simply-supported beam with 87, > 0.

6) no local buckling mode is distinguished, and the beam deflects upward. This is a very
important observation, implying that the delaminated beam is sensitive to the type of initial
imperfection. These two cases of a small and a large amplitude were also run with the aid
of the NASTRAN code (MacNeal, 1986) and results were in very good agreement, but
involved a much greater computational effort.

(b) Anisotropic beam

This example, which concerns a graphite/epoxy deluminated beam, is taken from
Sheinman ef al. (1989). The data for this example arc: length / = 60 mm, delamination
ratio 2 = [,/ = 0.5, 48 laminate with f,, = 0.125 mm, thickness of laminate = 6 mm,
thickness of defaminated upper layer A = | mm (H = 5 mm), E,, = 1.3357x 10'' Nm™?,
E:;=0928x10"" Nm™2 G,,=0.5765x10'" N m~* and v,, = 0.342. The symmetric
stacking combination of [0],[(45. —45, 0. 90),],[0]« was chosen. Because of the delamina-
tion, the stacking of region 2 (which is [0)3[(45, —45, 0, 90),],) is asymmetric and bending-
stretching coupling is present. The initial imperfection is again w(x) = ¢ sin (zx//). (It
should be mentioned that the stretching-bending coupling effect represents a built-in imper-
fection.) The buckling load of this case is given in Sheinman ¢t al. (1989) ; here, only the
post-buckling behavior is considered.

The stretching-bending coupling effect is examined in terms of the B, parameter of
region 2. The load-deflection for B,, < 0 (stacking [0][(45. —45. 0. 90),1.(0],) for B,, > 0
(stacking [(45, —45, 0, 90).].[0],) and for B,, = 0 (set artificially), are plotted in Figs 7, 8
and 9. respectively. It is seen that while at B,, < 0 no local buckling occurred, it did occur
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Fig. 9. Load-deflection curves of an anisotropic simply-supported beam with 85, = 0.

at 8, > 0 and the non-linear behavior is completely different. This can be explained by the
fact that in the first case. region 2 tends to deflect upward and in the second it deflects
downward. The effect of cylindrical bending (see Sheinman, 1989) was also checked by
adopting the stiffness parameter d|, = (D—BA~'B),, instead of d,, = D,, —B},/4,,. It
seems that consideration of cylindrical bending yields more flexible behavior. as illustrated
by the solid lines in Figs 7 and 8. Finally, unlike the bifurcation point,. the total load capacity
is always smaller when B, # 0, irrespective of whether it is positive or negative,

4. CONCLUSION

A non-lincar analysis and a solution procedure are presented for delaminated beams
of arbitrary stacking combination and boundary conditions under any external foading.
The non-lincar equations, which are based on the Von Karman kinematic approuch, are
solved by the modificd Newton method and a finite difference scheme. The theory and
solution procedure are general and suitable for investigating the effect of delamination on
the overall non-lincar behavior, as well as that of the initiul imperfection. Of the principal
findings, the following should be emphasized

1. For a delaminated beam, the bifurcation point is only an indication of the overall
behavior, and post-buckling analysis is called for,

The defaminated beam under axial compression is sensitive to the initial imperfection.
The stretching-bending coupling effect significantly reduces the stiffness of the beam,
Under cylindrical bending the beam behaves in a more flexible way.
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