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Abstr3ct-A general one·dimensional geometrical non·linear model of a composite dcl'lminated
beam under arbitrary a'ial and transverse loading for any boundary conditions is derived for
predicting the post·buckling behav·ior. The model comprises nonlinear equations based tln the Von
Karman kinematic appro.\ch. suitable for checking the effect ofdelamination and initial imperf\.'Ction
on the overall non·line..r behavior. The dilTerential equations. which incorptlmte the bending­
stretching coupling etf\.'t:t. are solved by Newton's method using .1 linite·dilrerence scheme. The
del..mination mtio parameter. bending-stretching coupling ,tnd the initial imperl\.'ction are ':'<Imined
by means of p.lrameteric ,,"alysis.

I. INTRODUCTION

Application of advanced composite materials entails advanced analytical tools and insight
into the response and failure characteristics of laminated composite structures. One mode
of failure is the so-c~llIed delamination clrect. which consists of interply fracture occurring
during fabrication or under the action of service 1~lctors such as impact loading. It may
signilic~lntly impair the load-carrying c~tp~tcity of the lamin.tte. mainly through local insta­
bility created in the vicinity of the allccted spot. Such local instability (represented
analytically by the lirst bifurc.t!ion point. given by ~I system of eigenv"lues) docs 110t
necessarily imply the ultim.tte load. and usually the laminate is capable of carrying on in a
posl-budling Illode under higher loading.

The bifun;;ttion point is discussed in recent works (Cllai ('/ al.. 19X I ; Yin ('/ al.. 1984;
Simitses ('[ al.• 19X5; Shirukumar and Whitcomb. 1985: Sheinm.tn ('/ al.• 1989) on the
dchtmination problems of one-dimensional models. Yin (19X6) and Chai £'[ til. (19X I) also
deal with the post-buckling sh"pc. bUl in terms of local del1.lluimllion growth rather than
of geometrical non-linear analysis. In most of the above studies. no allowance is made
for the eXlremdy important bcnding strctching coupling ctrecl, which makes for drastic
reduclion of lhe overall non-linear behavior. It should bc noted thal evcn if the plies arc
initially arrangcd in a symmetric pattern (in which case there is no coupling), this symmetry
is disturbed on dcl<lmination and coupling bl..'Comes possible.

The prcsent study is <In <lttempt to provide a suitable analysis for the non-linear
behavior ofa composile delaminated beam wilh initial impcrfection under external loading.
at an arbitrary stacking combination .tnd orientation "nd under arbitmry boundary con­
ditions. It is an extension of Sheinman .tnd Adan's therory (19M7) on delaminated beams.
and of Sheinman £'[ tll.·s work (19X9) on post-buckling behavior. The geometrical model is
the one employed by Simitses ('/ til. (1985) (also sec Sheinman ('[ til.• 19X9). whereby a
l'lmin"ted composite beam of thickncss / cont'lining (at dcpth Iz below thc top surlace; see
Fig. I) ;t parallel pl;tne crack extends over the lengthwise interval/~ = I] and across the
whole width. The crack. referred to as a "delamination". is assumed to exisl before loading
is applied and not to grow under it. The beam is subjected to arbitrary 'Ixi.tl und transverse
loading. The thickness-to-span (and to delamination length) is also assumed to be very
small. so that the shear deformation c<ln be neglected (see Shcinman and Adan. 1987). The
delamination subdivides the be"m into four regions. represented by equilibrium equations.
continuity requirements at the crack tips. and boundary conditions at the ends. The non­
line;tr differential equations are derived for the initial imperfection parameter ofeach region.
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Fig. I. load-<leftection curves for an isotropic simply-supported beam with positive initial imper­
fection for delamination length parameter :t = 1.,/1 = 0.375.

The solution procedure is based on reduction of the non-lineur differentiul equutions
to a linear sequence by a modification of Newton's method. and conversion to'1I1 ulgebmic
one by tinite differences. A parametric study of the effect of delumimttion und initial
imperfection on the non-linear behuvior was curried out by applying the procedure to
isotropic and anisotropic beams.

2. GOVERNING EQUATIONS

A";I/('1II111;('.1'

The KirchholT Love hypothesis. whereby a normal to an undcformed surf~tce remuins
unstretched after dcformutions. is adopted as the basic assumption. This leaves only two
independent variables. namely the displacements in the axi.1I (II) und normal (II') directions.
represented by the x- and =-coordinutes. respectively (sec Fig. I).

The kinemutic relation for each region is:

Vex. =) = II(X) - =11'., (x)

W(x. =) = w(x)

[;(x. =) = I; (x) +=x(x) ( I )

where I: (x) and x(x) arc respectively. the strain of the reference surface und change of
curvature under deformation. which. associated with the displacement lield and imper­
fection function li·(x). can be written as:

x(x) = - II'.". (2)

ecmSI;II/I;I'£' £'1//1(1/;01/.1'

Under the classical laminate theory (i.e. for a single anisotropic equivalent layer) the
force -strain relations can be written as:

N = A111:"-B1111'.,.,

A>f = B I II:' - D I I 11'....

where N and AI arc the axial force and bending moment. which are given by

(3)
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(4)

Set is the Kirchhoff stress in the undeformed system. A. B. and D being the usual stiffness
parameters employed in laminate theory :

(5)

b is the beam width andQll the elastic stiffness transformed to the x direction.
The bending moment can alternatively be expressed as (see Whitney. 1987)

(6)

The classical one-dimensional analysis involves the development of the laminated beam
theory (Whitney. 1987):

bll := BlI /A II

elll = DII-BrdA II •

while for behavior which is referred to as cylindrical bending (see Sheinman. 1989):

"II = ([A I)[B})II

elll = ([D)-[B){A - ')[B]) II'

(7)

(8)

Equilihrium ('qlUlt;om
By ;,applying the variational principle. the following non-linear equations are obtained

for a straight be<lm :

N., = -Pt

M,« + N(W,.u + Ii",.,,) +P, (Ill..• + Ii"_,) = - P:

with the bound<lry conditions imposed on

u or N

11',< or M.

(9)

(10)

Pt and P: are the external distributing loads in the axial and transverse directions.
respectively.

Substituting eqns (3)-(6) in (9) and (10). we obtain the non-linear equilibrium equation
in terms of displacements:

AII [u.tt + !w,••(II',.• + 21i" ..• ) + !w.,(w.u + 21i",... )) - BII W,u , := -Pt

-ell IW.n , + [A II(u", + }11'"(11',. + 21i",.» - Bt1 11'•• ,)· (w,•• + Ii",•.,) +P"(w,, + Ii',.) +bIlP.••• = -P:.

( II)

the boundary conditions being:

u or A lI [u,,+ !w,,(w,,+lv,,)]-BlIlV,t.<

w or -dI1Il',.". +bliP, + [A 11('(. + !w•• (w,. + Ii'.,»

- BIIW,tt](w., + Ii",.)

11'•., or BII [II,.+!W.•(II'.• +li',.)]-DII II'....,. (12)
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Continuity requirements
The following continuity requirements are applied at the crack tip (see Simitses et al.,

1985: Sheinman et ul., 1989).

Kinematic continuity conditions

Continuity of moments and forces

IIIIM-1211"f_PIM+13INe~~)_11IN('~~) = 0

_IIlIQ+11IQ+L1IQ =0

_C'IIN+ 11I N+(.IIN = 0

( 13)

(14)

where the left-hand superscript (0) denotes the numerical designation of the region of the
segment ndjoining the crack tip: for the first crack tip 1I = I and for the second 9 := 4. The
shear force Q is defined <IS

( 15)

The solution procedure is mainly the same as in Shcinman and Adan (1987), where a
modification of Newton's method is employed for reducing the non-line<lr equations to a
linear sequence, and a central finite difference scheme with fictitious points is used to convert
the differential equations into algebraic ones. Finally, this algebraic set of equations is
solved by a modification of Potter's method (Sheinman and Simitses, 1984).

3. NUMERICAL RESULTS AND DISCUSSION

For the procedure outlined above, a general computer program NADB (Non-linear
Analysis of Del'lmin.tted Beams) was written, covering non-linear behnvior of any dc­
lamimlted composite beam with arbitrary stacking combination and orientation under
arbitrary external loading and boundary conditions, as well as any geometrical imperfection.

Two cases of a simply-supported beam under axial compression were considered: (a)
isotropic and (b) unisotropic.

(a) Isotropic heam
This example is reproduced from Sheinman and Adan (1987) and demonstrates the

effect of the initial imperfection as well as of the delamination ratio parameter (x = I J//)'
The data for this example are: length I =4.0 m, width h = 0.04 01, thickness of laminate
t =0.08 01, thickness of delaminated upper layer" = 0.01 m (H == 0.07). modulus of
elasticity £ = 2.1 x 10" N m - 2 and Poisson's ratio v = 0.3. The initial imperfection was
taken as li"(.t') = J sin (xx//). The non-linear behavior was first examined for a positive
initial imperfection with sm.tll amplitude. In Fig. I the load-detlection curves of all regions
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Fig. 1. Etf~'Ct of del..mination ratio (x = 1.,/1) on non-linear behavior of an isotropic simply­
supported beam with positive initi..1imperfection.
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(region I at x = II' regions 2 and 3 at x = II +/2/2) are plotted for IX = 13/1 = 0.375. One
can see that at the load level of N :::: 0.4N.. (where N.. is defined as the buckling load of the
undelaminated beam). the delaminated upper luyer (region 3) is buckled. Then the total
stiffness of all regions is reduced. but the load capacity remains higher up to about 0.7N.r •

In other words. the bifurcation point for delaminated beams is only an indication of the
overall behavior. and does not represent the load cupacity. and the post-buckling behavior
should be considered. The effect of oc is shown in Fig. 2. in which it is plotted versus
deflection of the delaminated upper layer. It is seen that as oc increases. the load capacity
decreases. Above the local buckling load of the upper layer. the static scheme changes and
the internul force in this region is reduced. as illustrated in Fig. 3. The explanation is that
us the upper layer buckles. the eccentricity increuses und so docs the tensile force due to the
moment. so Ihut the compressive force decreuses.

The lucal buckling loud. represented by the first bifurcution point (in region 3). is given
hy tV 10;, = lirr 2

( Elhtn. where (EI)\ und 1\ are the stilTness and length of region 3 which
buckles lirsL II is u parumeter which depends on the end construints of region 3. which ure
in turn u function of the imperfection amplitude. For a perfect beum the upper layer cun
be considered us a c1al1lped~c1'lmped beam with II =4. In Fig. 4. Ii is plotted versus the
imperfection umplitude for some vulues of oc.

It should be noted here thut the present methodology does not allow for the contact
phenomenon. So. for some shupe of the imperfection. local buckling cannot occur (when
the dduminuted upper luyer buckles towurd the lower luyer). For this reuson we also
consider the bchuvior under a negutive initial imperfection. where buckling of the upper
luyer is possible.
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Fig. J. Load~deflection curves of region J for different values of delamination ratio (x).
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The load-dcllcction curves for all regions arc plotted in Fig. 5 for a small initial
impcrft.'Ction amplitude (I) = - 0.000 11) and in Fig. 6 for a large amplitude (J = - 0.0625/).
It is seen (Fig. 5) that although the initial imperfection was upward. the buckling shape of
the upper layer is upward but the beam dcllt.'Cts downward. For the larger amplitude (Fig.



0.5

Post-buckling analysis of composite delaminated beams

0.6

®

N~i3J_x
~z

CD,~ - [0]. [<. 4~-45,o, 9OIsJ.[0].

@ - [0]. ('45, -45,O,9OI
S
J.

@ - (0].
00~__--=-'!=--=--_--=-=-=-__~=-

0.0 0.02 0.04 0.06 Wrnax'l

Fig. 7. Load-del1ection curves of an anisotropic simply-supported beam with 8 iI < O.

iii I( .rZE,• I/lZI -1
__ cit. olD-BA BIll

____ dlf 0 0ll-BZll/A
ll

64S

04

0.3

02

01

00
-Q03 0.0

_____(2)

_--- (~ 1."l/z)

®
N 12: ~_.

h
i. 1)'(.) - [0).[( 45.-45,0,901,1.[0]11

(2) ((45, -45,0,90\,).[0]11
(i) • [0)11
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6) no local buckling mode is distinguished. and the beam dcl1ects upw.trd. This is a very
important observation. implying that the dclamimlted beam is sensitive to the type of initial
imperfection. These two cases of a small and a large amplitude were also run with the aid
of the NASTRAN code (MacNeal. 1986) and results were in very good agreement. but
involved a much greater computational efTort.

(0) Anisotropic beam
This example. which concerns a graphite/epoxy delaminated beam. is taken from

Sheinman et a/. (1989). The data for this example are: length / = 60 mm. delamination
ratio :x = /)// = 0.5. 48 laminate with 1t~1y =0.125 mm. thickness of laminate =6 mm.
thickness of delaminated upper layer It = I mm (fl = 5 mm). E I • = 1.3357 X 10" N m .. ~.

E~~ =0.928 X 10 10 N m -~. GI~ =0.5765 X 10 10 N m·~ and VI~ = 0.342. The symmetric
stacking combination of [Oh[(45. -45. o. 90).)4[Oh was chosen. Because of the delamina­
tion. the stacking of region 2 (which is [0)8[(45. -45. O. 90).)4) is asymmetric and bending­
stretching coupling is present. The initial imperfection is again I\'(x) = J sin (xxl/). (It
should be mentioned that the stretching-bending coupling effect represents a built-in imper­
fection.) The buckling load of this case is given in Sheinman et a/. (1989): here. only the
post-buckling behavior is considered.

The stretching-bending coupling effect is examined in terms of the BII parameter of
region 2. The load-deflection for BIt < 0 (stacking [Oh[(45. -45. o. 90).].l[0Is) for Bll > 0
(stacking [(45. -45. o. 90),)4[Oh) and for B •• = 0 (set artificially). are plotted in Figs 7. 8
and 9. respectively. It is seen that while at B •• < 0 no local buckling occurred. it did occur
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Fig. 9. Load-dclkction curves of an anisotropic simply-suppl1rted beam with 8; I = 0.

at B11 > 0 and the non-linear behavior is completely different. This can be explained by the
fact that in the first case. region 2 tends to deflect upward and in the second it deflects
downward. The effect of cylindrical bending (see Sheinman. 1989) was also checked by
adopting the stiffness parameter dll = (D - BA - I B) II instead of d ll = D II - Br ,/A II' It
seems that consideration of cylindrical bending yields more flexible behavior. as illustrated
by the solid lines in Figs 7 and 8. Finally. unlike the bifurcation point. the total load capacity
is always smaller when B II "'" 0, irrespective of whether it is positive or negative,

4. CONCLUSION

A non-linear analysis and a solution procedure are presented for delaminated beams
of arbitrary stacking combinution and boundary conditions under any externul louding.
The non-linear equations. which arc based on the Von Karman kinematic approuch. arc
solved by the modified Newton method and a finite difference scheme. The theory and
solution prlll.:edure arc general and suitable for investigating the effect of delamination on
the over.t11 non-line.lr behavior. as well as that of the initi.d imperfection. Of the principal
findings. the following should be emphasized:

I. For a delaminated he.tm. the bifurcation point is only an indication of the overall
behavior. and post-buckling analysis is called for.

2. The delaminated beam under <txi.t1 compression is sensitive to the initial imperfection.
3. The stretching-bending coupling effect significuntly reduces the stiffness of the beum.
4. Under cylindric.tI bending the beam beh<tves in a more flexible wuy.
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